EMICO_SYS.DOC
(last update Jan 31, 1997)

CONTENTS
A. INTRODUCTION
B. DEFINITION OF COMMON VARIABLES AND PARAMETERS USED IN EMICO PROGRAMS
C. DEFINITION OF “STANDARD” TWO-FOLD PARTICLE ORIENTATION
D. REFERENCE LIST

A. INTRODUCTION

The set of programs for computing the three-dimensional (3D) reconstruction of particles with icosahedral symmetry are based on the original core of programs developed at the MRC laboratory in Cambridge, England (circa 1970). Several modifications and additional routines were developed by Steve Fuller of the EMBL (Heidelberg) and Tim Baker of Purdue (West Lafayette, Indiana) which provide more quantitative and adaptable analysis of images of particles with icosahedral symmetry. This document just introduces the programs available. Specific instructions concerning the implementation of each of the programs appear in the documentation file for each program (e.g. BABE3:[TSB.DOC]EMICOLGFB.DOC).

--

The following is a list of available documentation for the programs required to compute 3D reconstructions of the icosahedral particles.

Abbreviations: C=complete, I=incomplete, N=not written

<table>
<thead>
<tr>
<th>DOCUMENTATION FILES:</th>
<th>STATUS</th>
<th>LAST UPDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMICO_SYS.DOC</td>
<td>C</td>
<td>Jan 31, 1997</td>
</tr>
<tr>
<td>EMICO.DOC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>EMICO3DR.DOC</td>
<td>C</td>
<td>Feb 10, 1997</td>
</tr>
<tr>
<td>EMICOFV.DOC</td>
<td>C</td>
<td>Oct 2, 1991</td>
</tr>
<tr>
<td>EMICOGRAD.DOC</td>
<td>C</td>
<td>Sep 15, 1994</td>
</tr>
<tr>
<td>EMICOGRAD2.DOC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>EMICOPFTDSP.DOC</td>
<td>C</td>
<td>May 27, 1992</td>
</tr>
<tr>
<td>EMICOROT.DOC</td>
<td>C</td>
<td>Dec 10, 1990</td>
</tr>
<tr>
<td>EMICOSYM.DOC</td>
<td>C</td>
<td>Dec 10, 1990</td>
</tr>
<tr>
<td>EMCORORG.DOC</td>
<td>I</td>
<td>Sep 3, 1990</td>
</tr>
<tr>
<td>EMFFT.DOC</td>
<td>I</td>
<td>Mar 5, 1992</td>
</tr>
</tbody>
</table>
The following is a list of documentation for programs no longer in use.

Abbreviations: C=complete, I=incomplete, N=not written

<table>
<thead>
<tr>
<th>OLD DOCUMENTATION FILES:</th>
<th>STATUS</th>
<th>LAST UPDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMICOBG.DOC</td>
<td>C</td>
<td>Jan 5, 1991</td>
</tr>
<tr>
<td>EMICOCOR.DOC</td>
<td>I</td>
<td>Sep 16, 1987</td>
</tr>
<tr>
<td>EMICOFB.DOC</td>
<td>C</td>
<td>Sep 15, 1994</td>
</tr>
<tr>
<td>EMICOLG.DOC</td>
<td>C</td>
<td>Sep 15, 1994</td>
</tr>
<tr>
<td>EMICOLGFB.DOC</td>
<td>C</td>
<td>Jan 31, 1997</td>
</tr>
<tr>
<td>EMICOMAT.DOC</td>
<td>C</td>
<td>Dec 27, 1990</td>
</tr>
<tr>
<td>EMICOMATBG.DOC</td>
<td>C</td>
<td>Jan 31, 1997</td>
</tr>
<tr>
<td>EMICOORG.DOC</td>
<td>C</td>
<td>Dec 17, 1990</td>
</tr>
<tr>
<td>EMICOORG2.DOC</td>
<td>C</td>
<td>Dec 17, 1990</td>
</tr>
<tr>
<td>EMICOPFT.DOC</td>
<td>C</td>
<td>May 27, 1992</td>
</tr>
<tr>
<td>EMICOPFTCC.DOC</td>
<td>C</td>
<td>Feb 19, 1993</td>
</tr>
<tr>
<td>EMICOPRJ.DOC</td>
<td>C</td>
<td>Dec 11, 1990</td>
</tr>
<tr>
<td>EMPFT.DOC</td>
<td>C</td>
<td>Aug 24, 1992</td>
</tr>
<tr>
<td>EMPFTCC.DOC</td>
<td>C</td>
<td>Aug 24, 1993</td>
</tr>
<tr>
<td>SURFACE.DOC</td>
<td>C</td>
<td>Apr 4, 1990</td>
</tr>
</tbody>
</table>

The following is a list of programs, subroutines and other files required to build a VAX/VMS version of the icosahedral particle 3D reconstruction system.

FORTRAN PROGRAM DRIVERS

| EMICO.FOR
| EMICO3DR.FOR
| EMICOCOR.FOR
| EMICOFV.FOR
| EMICograd.FOR
| EMICOORG.FOR
| EMICOORG2.FOR
| EMICOPFT.FOR
| EMICOPFTCC.FOR
| EMICOPFTDSP.FOR
EMICOPRJ.FOR
EMICOROT.FOR
EMICOSYM.FOR

EMCORORG.FOR
EMFFT.FOR
EMIMG.FOR
EMIMGFFT.FOR
EMMAP.FOR
EMPFT.FOR
EMPFTCC.FOR
EMPFTREF.FOR
SURFACE.FOR

SUBROUTINE OBJECT LIBRARIES

JUSTEM$DKA0:[TSB.FOR]TSBLIB.OLB
BABE3:[TSB.LEX]LEXI.OLB
BABE3:[TSB.NEWFV]SDFLIB.OLB

SUBROUTINE LIBRARY FILES (all on disk BABE3:)

EMICOLIB.SUBS
EMFFT.SUBS
EMIMG.SUBS
EMMAP.SUBS
FFTLIB1.SUBS
FFTLIB2.SUBS
IMGLIB.SUBS
IMG_PACK.SUBS
MAPLIB1.SUBS
MAPLIB2.SUBS
MISCLIB.SUBS
PFTLIB.SUBS

INCLUDE FILES (contain many COMMON block declarations):
--
EM.CMM
EMICO.CMM
EMICORAD.INC
EMICOSYM.INC
LEXI.CMM

Brief descriptions of the icosahedral and related programs (in alphabetical order):

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>

EMCORORG Determine particle origin(s) by cross-correlation methods.
EMFFT Multi-purpose FFT data manipulations.
EMICO Multi-purpose icosahedral data processing.
EMICO3DR Compute 3D-reconstruction of icosahedral particle
EMICOCOR Cross-correlate particle images for scaling (rarely used).
EMICODIF Difference MAP between raw and reprojected data.
EMICOFV Determine particle view orientation (theta,phi,omega).
EMICOGRAD Multiple particle, cross-common lines orientation refinement.
EMICOORG Refine particle origin.
EMICOORG2 BATCH mode common-lines origin refinement.
EMICOPFT Compute polar Fourier transforms of icosahedral projections.
EMICOPFTCC Cross-correlate raw image data with model PRJs and PFTs.
EMICOPFTDSP Display icosahedral PRJs or PFTs.
EMICOPRJ Project 3D icosahedral map in evenly spaced views for one half of the icosahedral asymmetric unit (also EMMAP "X").
EMICOROT Rotate 3D 2-fold MAP to equatorial (theta=90) orientation.
EMIMGBOX Window out individual particles from the scanned micrograph.
EMIMG Multi-purpose IMAGE data manipulations.
EMIMGFFT Compute 2D Fourier transform of particle IMAGE.
EMMAP Multi-purpose 2D/3D MAP data manipulations.
EMMAPDSP Display 2D/3D MAP with contours/grey-levels (also EMMAP "D").
EMMAPPRJ Project 2D/3D MAP from any view direction (also EMMAP "X").
EMMAP3DT 3D FFT of 3D MAP: produce 3D SFs.
EMPFT Compute projections and polar Fourier transforms of 3D data.
EMPFTCC Cross-correlate raw image data with model PRJs and PFTs.
EMPFTREF Combines work of EMPFT and EMPFTCC for refinements.
EMSF General purpose SF manipulation program
EMSF3DBT Inverse 3D FFT of 3D SF data; produce 3D MAP file
SIMPLEX Multiple particle, cross-common lines orientation refinement.
SURFACE Compute 3D MAP depth-cue representation (also EMMAP "B").
<table>
<thead>
<tr>
<th>OLD PROGRAM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMICOBG</td>
<td>Combine icosahedral data and solve for G's.</td>
</tr>
<tr>
<td>EMICOFB</td>
<td>Fourier-Bessel synthesis of 3D MAP ("standard" 2-fold view).</td>
</tr>
<tr>
<td>EMICOLG</td>
<td>Compute g's from G's.</td>
</tr>
<tr>
<td>EMICOMAT</td>
<td>Sets up normal matrices for each particle.</td>
</tr>
</tbody>
</table>
A former (Circa 1989-1992), "typical" protocol for processing icosahedral particles involved running programs in the following order:

1. EMIMG DISPLAY raw digitized IMAGE data
2. EMIMGBOX BOX out individual particles
3. [EMIMG] Normalize data/remove gradients/etc.
4. [EMFFT] FOURIER TRANSFORM IMAGE data
 (estimate RES_MIN, RES_MAX)
5. EMCORORG Initial particle ORIGIN estimate
6. EMICOFV Initial particle ORIENTATION estimate
7. EMICOORG Single particle ORIGIN refinement
8. EMICOGRAD<-- Interparticle ORIENTATION refinement
 [SIMPLEX] Interparticle ORIENTATION refinement
 > [EMICOORG2] Multiple particle ORIGIN refinement
9. EMICO3DR Set up normal MATRICES for particles, compute
 Gn's the gn's, and finally a 3D MAP with the
 FOURIER BESSEL procedure
10. [EMICOSYM] Enforce full 532 symmetry on 3D MAP.
11. EMMAP ("X") Reproject 3D MAP in refined view orientations
12. EMCORORG Refine particle ORIGINs by CC with projections
 go back to 8 Add/delete particles, increase resolution,
 etc.
 OR
13. EMPFT Model-based PFT refinement
 go back to 10 Add/delete particles, increase resolution,
 etc.

NEED TO ADD NEW PROTOCOL (EMPFT, EMPFTCC, EMPFTREF)
Additional programs for analysis of icosahedral particle data:

EMICODIF, EMICOPFT, EMICOPFTDSP, EMICOPFTCC, EMICOPRJ, EMICOROT
EMMAP, EMMAPDSP, EMMAP3DT
EMPFT, EMPFTCC, EMPFTREF
EMSF, EMSF3DBT
SURFACE

Older routines:

EMICOMAT, EMICOBG, EMICOLG, EMICOFB, EMICOMATBG, EMICOLGFB

B. DEFINITION OF COMMON VARIABLES AND PARAMETERS USED IN EMICO PROGRAMS

<table>
<thead>
<tr>
<th>NAME</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT_ORIGX,</td>
<td>pixel coordinates of the particle center (the point</td>
</tr>
<tr>
<td>FFT_ORIGY</td>
<td>0.0,0.0 corresponding to the lower left corner of</td>
</tr>
<tr>
<td>FFT_STEPSIZE</td>
<td>width of each transform annulus, given by:</td>
</tr>
<tr>
<td></td>
<td>(ICO_IDIM*RSCALE)</td>
</tr>
<tr>
<td></td>
<td>------------------ TPU</td>
</tr>
<tr>
<td></td>
<td>(ICO_DIAM*ICO_NSAMP)</td>
</tr>
<tr>
<td>FMIN</td>
<td>the fractional minimum amplitude (relative to the mean)</td>
</tr>
<tr>
<td></td>
<td>of data used in the refinement. This sets a threshold</td>
</tr>
<tr>
<td></td>
<td>so that data points with smaller amplitudes are</td>
</tr>
<tr>
<td></td>
<td>ignored. See EMICOFV.DOC for more details.</td>
</tr>
<tr>
<td>ICO_DIAM</td>
<td>the diameter of the original boxed particle (in pixels).</td>
</tr>
<tr>
<td>ICO_IDIM</td>
<td>transform dimension (same for X or Y directions: must</td>
</tr>
<tr>
<td></td>
<td>be 128, 256, 512, or 1024).</td>
</tr>
<tr>
<td>ICO_NSAMP</td>
<td>the number of annuli per interval of 1/ICO_DIAM (= 1</td>
</tr>
<tr>
<td></td>
<td>for single or 2 for double sampling of the FFT data.</td>
</tr>
<tr>
<td></td>
<td>(see EMICOMAT.DOC).</td>
</tr>
<tr>
<td>INCR</td>
<td>width of each band in number of transform annuli.</td>
</tr>
<tr>
<td></td>
<td>NBAND*INCR must be < ICO_IDIM/2.</td>
</tr>
<tr>
<td>MINR,MAXR</td>
<td>the inner and outer radii (in INTEGER TPU steps) of</td>
</tr>
<tr>
<td></td>
<td>the band of data thought to be correlated icosahedrally.</td>
</tr>
<tr>
<td></td>
<td>These parameters should be carefully chosen as outlined</td>
</tr>
<tr>
<td></td>
<td>in EMICOFV.DOC.</td>
</tr>
</tbody>
</table>
NANNULI number of annuli into which the transform is divided (EMICOMAT.DOC,EMICOBG.DOC,EMICOLG.DOC).

NBAND number of bands into which the Fourier transform is subdivided for scaling purposes in EMICOMAT and EMICOBG.

NSAMPL the number of radial sample steps to be taken within each annular band of the transform.

RADIUS number of radial steps in real space, i.e. the outer radius of the reconstruction in pixels (EMICOLG.DOC).

RADMIN the distance in reciprocal space beyond which data points are considered to be independent (usually equal to the reciprocal of twice the particle diameter (1/2*diameter) expressed in REAL*4 TPU. See EMICOFV.DOC for more details.

RES_MIN, RES_MAX define the lower and upper radial limits of data thought to be correlated icosahedrally. See EMICOFV.DOC for a complete description of how to estimate these limits (MINR,MAXR).

RScale radial scale factor (normally = 1.0 for images of frozen-hydrated particles boxed from a single micrograph.

STEP_SIZE size of each radial step in pixels used in EMICOLG (a ratio relative to the pixel size in the original scanned image).

THETA, PHI, OMEGA three Euler angles that define the particle view orientation (Klug/Finch convention given in J. Mol. Biol. (1968) 31:1-12).

TPU transform pixel unit.

C. DEFINITION OF "STANDARD" TWO-FOLD PARTICLE ORIENTATION

3D reconstructions of icosahedral particle are computed in the "standard" 2-fold orientation. In this view the 3D MAP contains the entire icosahedral particle viewed along a 2-fold axis such that three mutually perpendicular two-fold particle axes are aligned with an XYZ Cartesian MAP coordinate system (NCOL columns in the X direction; NROW rows in the Y direction; NSEC sections in the Z direction: see JUSTEM$DKA0:[TSB.FOR]EMPROGS.DOC for further details about the storage of MAP data).
The original MRC program produced a 3D MAP oriented with a two-fold axis parallel to the Z direction and a five-fold axis parallel to the Y direction.

The standard orientation is useful since:

1. Any equatorial view (\(\text{THETA}=90\)) can easily be computed from the 2-fold MAP.

2. The 2-fold MAP conforms to the Klug & Finch convention as described in J. Mol. Biol. 31:1-12 (1968) for the particle orientation (\(\text{THETA}/\text{PHI}/\text{OMEGA}\)). \(\text{THETA}\) is measured in degrees positive from the Z-axis towards the X-axis; \(\text{PHI}\) is measured in the XY plane in degrees positive from X towards Y; \(\text{OMEGA}\) is measured in degrees positive, counterclockwise about the viewing direction.

3. EMMAP and EMICOPRJ can be used to obtain 2-D projected views, and EMICOROT to compute a 3-D MAP with the Z-axis of the MAP coincident with an equatorial view.

D. REFERENCE LIST

The following lists provide a guide to the literature that deals with icosahedral virus structure and three-dimensional reconstruction methods.

GENERAL (METHODS/REVIEWS/ETC.)

RESULTS - 3D OF NEGATIVELY-STAINED ICOSAHEDRAL VIRUSES

RESULTS – 3D OF UNSTAINED, FROZEN-HYDRATED ICOSAHEDRAL VIRUSES

NOTE: This list is horribly incomplete!

